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Existence and properties of quadratic solitons in anisotropic media: Variational approach

Sergey V. Polyakov* and George I. Stegeman
School of Optics and CREOL, University of Central Florida, 4000 Central Florida Boulevard, CREOL Building, Orlando, Florida 3

~Received 7 May 2002; published 29 October 2002!

Stationary quadratic solitons associated with second harmonic generation in optically anisotropic media have
been investigated both numerically and analytically using the variational approach. The solitons were found to
have elliptical shapes, both for the fundamental and second harmonic, and their approximate beam waists and
amplitudes as a function of the anisotropy and the soliton parameter were found. The important limits of
anisotropic diffraction were compared to the well-known model of isotropic diffraction. The stability of an-
isotropic solitons was addressed via the Vakhitov-Kolokolov criterion and the regions of parameter space for
which the solitons are stable were identified. Direct numerical simulations of the coupled field equations were
performed to illustrate the existence, stability, and ellipticity of anisotropic quadratic solitons. In general, good
agreement was found between approximate analytical approaches and numerical experiments.

DOI: 10.1103/PhysRevE.66.046622 PACS number~s!: 42.65.Tg
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I. INTRODUCTION

Quadratic solitons are supported in media with seco
order ~quadratic! nonlinearities due to the strong paramet
interaction of two or more waves@1,2#. These effects depen
strongly on the dispersion of the material: one needs to
proximately phase match at least two optical frequencie
order to observe the strong coupling. In most cases the p
matching requires anisotropic crystal properties. Because
ferent polarizations of the interacting beams would see
ferent dispersion curves, the indices of refraction, e.g., fo
fundamental wave~FW! and its second harmonic~SH!, can
be made equal despite the law of normal dispersion. H
ever, in bulk anisotropic crystals the refractive index surfa
~and therefore wave vector surface! is no longer spherical bu
is elliptical in nature. The diffraction coefficient is propo
tional to the local curvature of the wave vector surfa
Therefore, linear diffraction of the interacting optical beam
is different for their two transverse dimensions. The diff
ence in the diffraction constants is usually small and th
has been no experimental evidence until recently that t
anisotropy is important in soliton phenomena. The proper
of quadratic solitons, with anisotropic effects neglected, h
been explored in detail theoretically, numerically, and exp
mentally@3–6#. In particular, the variational approach whic
was successfully used to solve for various properties of
tical solitons@7# was applied by Steblinaet al. in 1995 to
describe stationary quadratic solitons@8#.

The formation of multiple solitons observed in recent e
periments by Malendevichet al. @9# and Kim and Stegeman
@10# has been explained by Polyakovet al. as due to aniso-
tropic diffraction @11#. These experiments dealt with the e
citation of the quadratic solitons by a high powered, Gau
ian FW. Such excitation conditions are very different fro
the exact stationary soliton solutions@8#. It turns out that the
formation of a stationary soliton with FW input only occu
slowly with distance. In an isotropic medium the circul
symmetry is conserved, and therefore a circular
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symmetrical input beam evolves into one soliton with a
excess of the input radiation emitted into diffracting ring
regardless of input intensity. However, this is not true for
anisotropic case. In crystals circular symmetry is inheren
broken by anisotropy. It was shown recently that the proc
of beam evolution may lead to the formation of several so
tons, aligned on a ‘‘preferential’’ crystal axis even thoug
anisotropic diffraction is small: it is the breaking of the sym
metry which matters@11#! The direction of such a preferen
tial axis is determined by the combination of anisotropic d
fraction coefficients.

The key questions are now whether the resulting soli
fields that are no longer cylindrically symmetric are statio
ary ~and stable!, what is the shape of the field distribution
etc. It is well known, that in the 1D case there is only one
of parameters that leads to an exact analytic solution@1–2#.
In the 2D isotropic diffraction case, there are no analy
solutions, and therefore, variational methods or compu
simulations have usually been necessary. The anisotropic
case is even more complex, and we do not expect any e
solutions to exist.

II. VARIATIONAL APPROACH

Consider an anisotropic medium with a quadratic nonl
earity configured for noncritical phase matching for seco
harmonic generation with two-dimensional beam cross s
tions, the case studied experimentally in biaxial cryst
@9–11#. The FW and SH index ellipsoids of appropriate p
larization just touch along the propagation axis. The nec
sity for different diffraction coefficients along the two tran
verse cross-sectional beam directions may be unders
from the difference in the local radii of curvature of the wa
vector surface along the different crystal axes for both thev
and 2v waves inherent to finite beam propagation alo
crystal axes in biaxial bulk media~Fig. 1!. This can be also
derived directly from Maxwell’s equations. In crystals, d
electric permittivity is a tensor rather than a scalar. This t
sor may be diagonalized by rotation to its principal axes,
©2002 The American Physical Society22-1
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0 0 ez

D .

Let us restrict ourselves to light propagation along one of
principal axes~z! with polarization along an orthogonal ax
~h! ~Fig. 1!. Substitution of the light beam in the formE
5A(h,g,z)exp(ikz z) and above permittivity tensor into
Maxwell’s equations yields the ratio between diffraction c
efficients~or constants which multiply the second derivativ
of the field A with respect to transverse dimensions! along
two perpendicular directions to be equal toeh /ez . From this
point on we consider only the case in which all beams
polarized along principal axes. We see that the polariza
of light defines the spatial anisotropy in the diffraction co
ficient.

Let us now consider the equations for the slowly varyi
envelopes of thev and 2v waves.

i
]A1

]z
1S D11

]2A1

]h2 1D12

]2A1

]g2 D52GA2A1* exp~2 iDkz!,

i
]A2

]z
1S D21

]2A2

]h2 1D22

]2A2

]g2 D52GA1
2 exp~ iDkz!.

In these equationsD11, D12, D21, and D22 stand for the
diffraction of a fundamental wave~FW, first index is 1! and
second harmonic~SH, first index is 2! along theh ~second
index is 1! andg ~second index is 2! axes, respectively,G is
proportional to the coefficient of quadratic nonlinearity a
Dk is the wave vector mismatch between the fundame

FIG. 1. Linear beam propagation in anisotropic medium. Herk
is the central propagation wave vector of a diffracting beam pro
gating along thez axis and the dashed lines are the cuts of the w
vector surface in thez-h andg-z planes. The ellipses are cuts of th
wave vector surface parallel toh-g plane and the major and mino
diameters are related to the diffraction coefficients along the
crystal axes.
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(ki , i 51) and second harmonic (ki , i 52) wave vectors,
i.e. Dk52k12k2 . Depending on the polarization of the in
put beam, one of the diffraction coefficients for each fr
quency will be equal to 1/2ki and the other one will be dif-
ferent by the ratioeh /ez ~or eg /ez). Note that since these
equations have different diffraction coefficients along t
beam transverse dimensionsh and g, they do not preserve
circular symmetry, as opposed to an isotropic medium
which D115D12 andD215D22.

The problem now is to find the changes in the shape
properties of quadratic solitons due to such anisotropic
fraction. In order to address the existence and approxim
shape of the solitons one can employ a variational meth
which has been proven to be very effective and valuable
other quadratic soliton problems@8#. First we use standard
procedures to normalize the slowly varying envelope eq
tions, which describe the propagation of FWs and SHs
nonlinear anisotropic media@8#,

i
]B1

]z
1d11

]2B1

]x2 1d12

]2B1

]y2 2B11B1* B250,

is
]B2

]z
1d21

]2B2

]x2 1d22

]2B2

]y2 2aB21
1

2
B1

250, ~1!

where the coordinates and other parameters are rescaled
the nonlinear correction to the propagation wave vector fo
soliton, b. Thusz5bz is a normalized propagation coord
nate, x5(2bk1)1/2h and y5(2bk1)1/2g are normalized
transverse coordinates, and theBi are normalized FW (i
51) and SH (i 52) fields.s5k2 /k1 is close to 2 for near-
phase-match operation and the normalized anisotropic
fraction termsdi j 52kiDi j are close to unity~and greater
than zero!. The subscript ‘‘j’’ refers to the transverse direc
tions x or y. The original electric fields are related to th
normalized ones byA15(b/GA2s)B1 exp(ibz) and A2
5(b/G)B2 exp@i(2b1Dk)z#. Finally, a5(2b1Dk)s/b is
the soliton parameter describing the ratio between the w
vector mismatchDk andb. The requirement of exponentia
localization of the solitons necessitatesa.0.

Unlike Kerr-like solitons, this problem is inherently tw
dimensional and cannot be generally reduced to quasicirc
symmetry by further renormalization of the normalize
transverse coordinatesx and y, i.e., there is no cylindrical
symmetry because thedi j are not equal to each other. The
equations are formally similar to ones describing quadra
light bullets @12,13#, used to discuss the properties of on
dimensional, spatio-temporal quadratic solitons with ‘‘anis
ropy’’ necessitated by dispersion. Our case involves phys
limitations on the size of the anisotropy found in nature th
allows the introduction of further analytical approximation
Also, if the transverse axesx andy are rescaled, the soliton
parametera as well as the field normalization will take dif
ferent forms from the most common ones@8#.

For stationary solutions, i.e., no dependence of the am
tudes on propagation coordinatez

-
e

o
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d11

]2B1

]x2 1d12

]2B1

]y2 2B11B1* B250,

d21

]2B2

]x2 1d22

]2B2

]y2 2aB21
1

2
B1

250.

Following the procedure outlined by Steblinaet al. @8#, we
introduce the Lagrangian, given by

L5
1

2 E2`

1`E
2`

1`

dx dyH S d11S ]B1

]x D 2

1d12S ]B1

]y D 2

1d21S ]B2

]x D 2

1d22S ]B2

]y D 2D1B1
21aB2

22B1
2B2J ,

and approximately solve the resulting Euler-Lagrang
equations. Allowing the soliton to have an elliptical rath
than a circular form, we introduce trial functions of the form

B15C1e2b11x
22b12y

2
; B25C2e2b21x

22b22y
2
.

These functions are used to turn the variational problemdL
50 into a set of algebraic equations obtained by taking
first derivatives ofL with respect to the parametersC i and
bi j , (i ; j )51,2. Substituting the trial function into the La
grangian yields a system of six equations. After simplific
tion the amplitudes of the elliptical Gaussian solutions
sumed are found to be

C2
25

~b11d111b12d1211!

2Ab11b12

A~2b111b21!~2b121b22!,

C15H C2

~b21d211b22d221a!

Ab21b22

3A~2b111b21!~2b121b22!J 1/2

.

The soliton waists are given by

b215
4b11

2 d11

12b11d111b12d12
,

b225
4b12

2 d12

11b11d112b12d12
,

b115
b21

2 S 11
4b21d21

a2b21d211b22d22
D ,

b125
b22

2 S 11
4b22d22

a1b21d212b22d22
D .
04662
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The beam waists must be positive so thatub11d112b12d12u
,1 andub21d212b22d22u,a. It is possible to express the SH
beam waists in terms of the FW beam waists and indep
dent material parameters, and vice versa. However, fur
elimination of variables leads to very complex equations
fifth order.

It is instructive to examine several special cases bef
proceeding with the most general treatment. For isotro
diffraction, i.e., setting all diffraction parametersdi j to 1, the
set of completely independent equations first found in R
@8# is obtained, namely,

b115b12, b215b22, 2a12ab11132b11
3 50. ~2!

Here one needs to retain only positive real roots due
physical restrictions on beam waist. Another interesting
lution arises forb11d112b12d1250, which means that the
solitons are elliptical, and their ellipticity is simply propo
tional to the anisotropy of the FW diffraction coefficient
This condition requiresd11d225d12d21, which basically
states that for this particular case there exists a transfor
tion ~i.e., rescaling of transverse coordinatesx andy! which
transforms the set of two bounded Eqs.~1! to circular sym-
metry. In this case the variables in the equations for be
sizes bi j are easily separable which leads to an equat
similar to Eq.~2!, namely,

2a12ad11b11132d11
2 d21b11

3 50. ~3!

This is an important result which shows that the anisotro
soliton parameters are expected to depend on the phase
match, similar to the dependence found for isotropic soli
parameters. Also, if one is to employ numerical methods
solve the full set of algebraic equations, the suggested in
guess would be given by Eq.~2! or Eq.~3!. It is worth noting
to observe that for anya.0, d11.0 andd21.0, a b11.0
does exist. Subsequently this special case will be referre
as quasi-isotropic.

The most general case is now considered. Treating
parametera as a variable, introducing the substitution
b12d125 l and b11d115n, and choosingn to be a second
variable andl to be a parameter, the ‘‘variables’’ can be sep
rated and the set of solutions found. For the material par
etersd11 andd12, solutions of different ellipticity are sough
by varying the parameterl. This leads to

a5
2n2

n2 l H d21

d11
S 11

2~n11!

~n2 l 21! D2
d22

d12
S 32

2~n12!

~n2 l 11! D J
~4!

and

05
~2 l 2n21!

n2 l Fd22

d12
~n2 l 21!~3n2 l 21!l 2

2
d21

d11
~n2 l 11!n2~n23l 11!G . ~5!
2-3
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FIG. 2. Variation inn as a function ofl for d21/d1151 andd22/d1251.1. Thin dashed lines, physical limits forn andl. Thin dotted line,
quasi-isotropic dependence. Thick dashed line, unphysical branch. Thick dotted line, branch containing unphysical and phys~but
ultimately unstable! solutions. The region near the origin is expanded in the inset. Physical solutions are located from the origin u
black dot. The thick solid line, which is discontinuous between the two black dots, contains both unphysical and physical~partly stable and
partly unstable! solutions. Its physical solutions lie on the line between the black dot and the white triangle. The soliton parametera varies
monotonically from 0 at the origin to infinity at the triangle position.
en
ed

lf
t
n-
er
n

,

ot

-
n
es
lin

-

o
ll

tu
a

si-

the
The last equation yields five different solutions for any giv
l. However, most of the solutions are unphysical. Inde
both n and l must be real positive values,un2 l u,1, and the
parametera also is expected to be positive to insure se
trapping, by analogy to the isotropic case. Note that the se
solutions forn2 l 50 requires special treatment and coi
cides with the ‘‘quasi-isotropic’’ case treated above. Furth
more, two of the solutions do not match the criteria for a
values of parameters and are considered unphysical.

The typical variation ofn as a function ofl for d21/d11
51 andd22/d1251.1 in the real plane is shown in Fig. 2
along with the largest difference betweenn and l ~thin
dashed lines! acceptable by the physical constraints that b
n and l must be real positive values andun2 l u,1. The thin
dotted line is forn5 l . The exclusion of nonphysical solu
tions leaves only one continuous set of physical solutio
made up of partial combinations of two different branch
These physical solutions start at the origin as a dotted
and continue smoothly~at the solid dot! as a solid line up to
l'0.55~marked by a triangle!. Each pair of physical param
eters,n and l, determines a uniquea, which varies from 0 to
positive infinity asl varies from 0 to'0.55. The continua-
tion of this set forl .'0.55 is unphysical, becausea be-
comes negative. Note that the set of physical solutions d
not deviate much from the ‘‘quasi-isotropic’’ solution for a
physically reasonable ratios~from about 0.7 to about 1.4! of
d21/d11 andd22/d12. This suggests another useful substi
tion, m5n2 l and an approximation to the equations th
retains only linear terms with respect tom. For Eq.~5! this
yields the simple first-order equation relatingl to n ~after
substituting backm5n2 l ),
04662
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2Fd21

d11
1

d22

d12
Gn322

d21

d11
n22Fd21

d11
1

d22

d12
Gn

2Fd21

d11
1

d22

d12
Gn212Fd22

d12
22

d21

d11
Gn22

d22

d12

. ~6!

After applying the same approximation to Eq.~4!, the soli-
ton’s waist as a function of the parametersa anddi j is given
by

2a12an14S d21

d11
2

d22

d12
Dn2116S d21

d11
1

d22

d12
Dn350. ~7!

Formally, Eq.~7! includes both Eqs.~2! and~3!, even though
it is derived under the condition thatn2 lÞ0 ~or d11d22
Þd12d21). As discussed before, there is only one real po
tive solution for eacha.0 anddi j .0.

III. STABILITY

The stability issue was addressed by employing
Vakhitov-Kolokolov criterion for soliton stability@14#. The
dependence of the Hamiltonian

H5E E H d11U]B1

]x U2

1d12U]B1

]y U2

1d21U]B2

]x U2

1d22U]B2

]y U2

2
1

2
~B1*

2B21B1
2B2* !J dx̃ dỹ

on the total energy
2-4
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FIG. 3. Hamiltonian versus en
ergy for anisotropic solitons with
the isotropic limit given by the
solid line. ~a! Examples of the
quasi-isotropic limit, d115d21

51.3, d215d2251 ~dashed!; d11

5d2150.7, d215d2251 ~dotted!;
~b! Examples of substantially an
isotropic cases,d1151.3, d1251,
d2150.7, d2251 ~dashed!; d11

50.7, d2151, d2151.3, d2251
~dotted!.
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Q5E E ~ uB1u212suB2u2!dx̃ dỹ,

for different amounts of anisotropic diffraction was com
pared with the isotropic dependence. It is obvious that t
physically different cases need to be considered individua
The curves shown in Fig. 3~a! are for the casesd11.d12

together with d21.d22, or d11,d12 together with d21

,d22, which is typical for anooo geometry~quasi-phase
matched solitons!. Solitons of this kind can be approximate
in many cases by the quasi-isotropic solitons discus
above. Indeed, for periodically poled KTP, the diffractio
anisotropy is about 13% for the FW and 11% for the S
That is,eh /ez will be equal to 1.106 for FF and 1.125 for S
@15#. The multiple soliton generation mechanism in such s
tems is currently being studied and is beyond the scop
this paper. Fig. 3~b! presents theH(Q) dependence for or
thogonal orientations of the long axes of the diffraction
lipse for the FW and the SH. This is usually the case forooe
SHG geometries~Type I solitons!. The beam propagation in
such the materials was discussed in Ref.@11#, and exhibits
novel behavior when compared to isotropic diffraction. Us
ally the soliton is excited via a single Gaussian-shaped
beam, which is substantially different from the stationa
soliton solution, and the formation of high energy solitons
affected by beam deformation due to anisotropic diffract
and results in multiple soliton generation. It turns out, ho
ever, that both cases yield comparable behavior in anH(Q)
plot. This result shows that despite fundamental differen
in multiple soliton generation mechanisms the solitons
both cases are similar. In all plots, thea parameter grows
along the curve starting from its right-uppermost corn
Thus the necessary stability criteriondH/dQ,0 is satisfied
for sufficiently largea and the shape, and main features
the H(Q) curves are very similar to the isotropic case. It
very important to note that the branch splitting found w
the variational approach and plotted in Fig. 2 does not c
stitute a change of slope for theH(Q) curve, yielding the
sameH(Q) dependence as in the isotropic case@8#. There-
fore, the stability puts another constraint on the range
acceptable soliton widths. Specifically for physically acce
able anisotropies, the physical solutions from the origin to
least the solid circle in Fig. 2 are unstable with the stabi
range determined by the details of the anisotropy.
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IV. NUMERICAL SIMULATIONS

In order to support our analytical findings, we perform
a series of direct numerical simulations of the normaliz
coupled equations for a large~relative to that found in mos
phase-matchable crystals! diffraction deformation of about
30% to emphasize the noncircular nature of the soliton fie
We use a standard split-step Fourier method to solve~1! for
an initial field distribution based on the approximate solit
solutions. As an example, for the soliton parametera510
we compare the propagation of both quasi-isotropic and
isotropic solitons defined byd115d2150.7,d125d2251, and
d115d2250.7, d125d2151, respectively. According to the
predictions of the variational method combined with t
Vakhitov-Kolokolov criterion we should have stable solito
propagation in both cases.

First, we discuss propagation of a quasi-isotropic soli
with a510. The propagation of the soliton found via th
variational method is not stationary at the input because
this technique’s inherent approximations@Fig. 4~a!#, but
evolves towards a stationary soliton. We see that the ou
fields are slightly elliptical. The ratio of the half-widths a
half maximum~HWHM! along the axes for the FW is th
same as for the SH, around 0.87@Fig. 4~b!#. This value per-
sists with small changes in beam size due to nonstation
propagation. This result can be obtained from a renormal
tion of transverse dimensions which renders the coefficie
for the diffraction terms equal to unity in Eq.~1!, and also
from the variational method, both of which give 0.84 for th
beam waist ratio~calculated fromAb12/b11). Thus we see
that the 2D numerical method is consistent~to within 4%!
with the approximate analytics and preserves the quasici
lar symmetry of the problem.

The propagation results for anisotropic solitons witha
510, again based on the initial solutions used for the va
tional technique, are also near the input not strictly station
@Fig. 5~a!#, similar to the quasi-isotropic case. The appro
mate ratio of the beam waists along the two axes is 0.87
the FW and 0.96 for the SH@Fig. 5~b!#. The variational ap-
proach gives 0.86 and 0.92 correspondingly. Because the
tensity of the FW component is substantially higher than
SH and the waves are strongly coupled, the deviation fro
circular beam shape is in the same direction in space for b
components, and not in orthogonal directions as expec
from linear optics~decoupled waves! for d12/d11.1 and
d22/d21,1. Therefore, we note that a variational approxim
2-5
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SERGEY V. POLYAKOV AND GEORGE I. STEGEMAN PHYSICAL REVIEW E66, 046622 ~2002!
tion describes the relative orientation of the long semiaxe
the elliptical soliton, although it fails to predict the exa
beam waist at HWHM. The latter can be explained by
fact that the trial functions~Gaussians! used in the varia-
tional method differ from the exact soliton shape. This sho
that the variational method developed here predicts corre
the existence and properties of anisotropic solitons. Note
umu is less than 0.05 in this case, which makes the propa
tion of anisotropic solitons given by the approximate form
las ~6! and ~7! valid.

The small diffraction anisotropy available for physical
realizable crystals leads to only weak ellipticity in the fie
profiles and it is not surprising that it has not been repor

FIG. 4. Soliton propagation and shapes after propagation
nonlinear quasi-isotropic medium witha510, d115d2150.7, and
d125d2251. ~a! intensity distribution alongy axis during propaga-
tion; ~b! output profile and evolution of the FW and SH.
04662
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experimentally. However, the effect of diffraction anisotro
does manifest itself clearly in multisoliton generation in
number of noncritically phase-matched second harmonic
ometries.

V. CONCLUSIONS

We showed, both analytically and numerically, that qu
dratic solitons in optically anisotropic media exist, are stab
and have an elliptical shape. We also explored the mult
solutions obtained by a variational approach to find
uniqueness of the soliton solution for any given set ofdi j
~diffraction coefficients! anda ~soliton parameter dependin
on intensity and wave vector mismatch!. Depending ona,
these solutions may be stable or unstable.

a
FIG. 5. Soliton propagation and shapes after propagation

nonlinear essentially anisotropic medium witha510, d115d22

50.7, andd125d2151. ~b! intensity distribution alongy axis during
propagation;~b! output profile and evolution of the FW and SH.
2-6
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