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Existence and properties of quadratic solitons in anisotropic media: Variational approach
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Stationary quadratic solitons associated with second harmonic generation in optically anisotropic media have
been investigated both numerically and analytically using the variational approach. The solitons were found to
have elliptical shapes, both for the fundamental and second harmonic, and their approximate beam waists and
amplitudes as a function of the anisotropy and the soliton parameter were found. The important limits of
anisotropic diffraction were compared to the well-known model of isotropic diffraction. The stability of an-
isotropic solitons was addressed via the Vakhitov-Kolokolov criterion and the regions of parameter space for
which the solitons are stable were identified. Direct numerical simulations of the coupled field equations were
performed to illustrate the existence, stability, and ellipticity of anisotropic quadratic solitons. In general, good
agreement was found between approximate analytical approaches and numerical experiments.
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[. INTRODUCTION symmetrical input beam evolves into one soliton with any
excess of the input radiation emitted into diffracting rings,
Quadratic solitons are supported in media with secondregardless of input intensity. However, this is not true for an
order (quadrati¢ nonlinearities due to the strong parametric anisotropic case. In crystals circular symmetry is inherently
interaction of two or more wavd4,2]. These effects depend broken by anisotropy. It was shown recently that the process
strongly on the dispersion of the material: one needs to apef beam evolution may lead to the formation of several soli-
proximately phase match at least two optical frequencies ions, aligned on a “preferential” crystal axis even though
order to observe the strong coupling. In most cases the phasgisotropic diffraction is small: it is the breaking of the sym-
matching requires anisotropic crystal properties. Because difnetry which matter§11]! The direction of such a preferen-
ferent polarizations of the interacting beams would see diftja| axis is determined by the combination of anisotropic dif-
ferent dispersion curves, the indices of refraction, e.g., for @raction coefficients.
fundamental wavéFW) and its second harmoniGH), can The key questions are now whether the resulting soliton
be made equal despite the law of normal dispersion. HoWyie|ds that are no longer cylindrically symmetric are station-
ever, in bulk anisotropic crystals Fhe refractive mdgx surfaceary (and stablg what is the shape of the field distributions,
i(srﬁnt;t?cr:ﬁ;erﬁ?:fev?rcrfgrgilfj-frrfggﬁonno (I:cc))r;?f(iecrizg??snﬁinzztr- etc. It is well known, that in the 1D case there is only one set
y of parameters that leads to an exact analytic solUti:?].

tional to the local curvature of the wave vector surface.In the 2D isotropic diffraction case. there are no analvtic
Therefore, linear diffraction of the interacting optical beams . P L Y
solutions, and therefore, variational methods or computer

is different for their two transverse dimensions. The differ->. . . .
ence in the diffraction constants is usually small and ther&imulations have usually been necessary. The anisotropic 2D

has been no experimental evidence until recently that theif@S€ iS éven more complex, and we do not expect any exact

anisotropy is important in soliton phenomena. The propertie§olutions to exist.

of quadratic solitons, with anisotropic effects neglected, have

been explored in detail theoretically, numerically, and experi-

mentally[3—6]. In particular, the variational approach which [l. VARIATIONAL APPROACH
was successfully used to solve for various properties of op-

tical solitons[7] was applied by Steblinat al. in 1995 to Consider an anisotropic medium with a quadratic nonlin-

describe stationary quadratic solitoi& earity configured for noncritical phase matching for second
The formation of multiple solitons observed in recent ex-Narmonic generation with two-dimensional beam cross sec-

periments by Malendevicht al.[9] and Kim and Stegeman tions, the case studied _experimenta_\lly in biaxial _crystals
[10] has been explained by Polyaketal. as due to aniso- [9—-11. The FW and SH index ellipsoids of appropriate po-
tropic diffraction[11]. These experiments dealt with the ex- larization just touch along the propagation axis. The neces-
citation of the quadratic solitons by a h|gh powered' GaussSity for different diffraction coefficients along the two trans-
ian FW. Such excitation conditions are very different fromverse cross-sectional beam directions may be understood
the exact stationary soliton solutiof]. It turns out that the from the difference in the local radii of curvature of the wave
formation of a stationary soliton with FW input only occurs vector surface along the different crystal axes for bothdhe
slowly with distance. In an isotropic medium the circular and 2» waves inherent to finite beam propagation along
symmetry is conserved, and therefore a circularly-crystal axes in biaxial bulk medigig. 1). This can be also
derived directly from Maxwell's equations. In crystals, di-
electric permittivity is a tensor rather than a scalar. This ten-
*Email address:serge@creol.ucf.edu sor may be diagonalized by rotation to its principal axes,

1063-651X/2002/6@}/0466227)/$20.00 66 046622-1 ©2002 The American Physical Society



SERGEY V. POLYAKOV AND GEORGE |. STEGEMAN PHYSICAL REVIEW 66, 046622 (2002

Ay (kj, i=1) and second harmonid, i=2) wave vectors,
i.e. Ak=2k;—k,. Depending on the polarization of the in-
put beam, one of the diffraction coefficients for each fre-
quency will be equal to 1R and the other one will be dif-

¢ ferent by the ratioe, /€, (or €,/€,). Note that since these
equations have different diffraction coefficients along the
beam transverse dimensiomsand v, they do not preserve

. Yo circular symmetry, as opposed to an isotropic medium in

e T ~a which D11:D12 and D21:D22.

The problem now is to find the changes in the shape and
properties of quadratic solitons due to such anisotropic dif-
fraction. In order to address the existence and approximate
shape of the solitons one can employ a variational method,
which has been proven to be very effective and valuable in
other quadratic soliton problenj8]. First we use standard
procedures to normalize the slowly varying envelope equa-
tions, which describe the propagation of FWs and SHs in
nonlinear anisotropic media],

FIG. 1. Linear beam propagation in anisotropic medium. Here
is the central propagation wave vector of a diffracting beam propa-

gating along the axis and the dashed lines are the cuts of the wave i ’9_51 +d (7251 +d (9251 B.+B*B.=0
vector surface in thé-» andy-¢ planes. The ellipses are cuts of the 9z 11 9x2 12 5y 1721227
wave vector surface parallel tg-y plane and the major and minor
diameters are related to the diffraction coefficients along the two
crystal axes. 4B, 6’282 8282 1 ,
lo 9z +d21 (9X2 +d22 (9y2 a82+ 2 Bl—O, (1)
, 0 0
e=| O €, 0]. . .
where the coordinates and other parameters are rescaled with
0 0 e the nonlinear correction to the propagation wave vector for a

) . _ _ soliton, 8. Thusz= B¢ is a normalized propagation coordi-
Let us restrict ourselves to light propagation along one of itg,5¢e x=(28k,)Y2y and y=(28k,)Y?y are normalized
principal axeq?) wi.th .polarization.along an orthogonal axis transverse coordinates, and tBe are normalized FW i(
() (Fig. 1. Substitution of the light beam in the forB  _ 1y anq SH (=2) fields.a=k,/k, is close to 2 for near-
=A(n,7’,§)expﬁl.(§§) and above permittivity tensor into phase-match operation and the normalized anisotropic dif-
Maxwell's equations yields the ratio between diffraction co-fr4ction termsd;; =2k;D,. are close to unityand greater
efficients(or constants which multiply the second derivativesip,n zerd. The sJubscrip'E | refers to the transverse direc-
of the field A with respect to transverse dimensip@#ong  tions x or y. The original electric fields are related to the
two perpendicular directions to be equaletp/ e, . From this normalized ones byA,=(B/T'y20)B, exp(B0) and A,
point on we consider only the case in which all beams are:(ﬁ/r)Bz exdi(28+AK)]. Finally, a=(28+AK)a/B is
polgrized a_llong principa_ll axes. we See that 'ghe pqlarizatio%e soliton parameter describing t,he ratio between the wave
of light defines the spatial anisotropy in the diffraction coef-vector mismatchAk and . The requirement of exponential

ficient. . . . __localization of the solitons necessitates 0.
Let us now consider the equations for the slowly varying Unlike Kerr-like solitons, this problem is inherently two
envelopes of the» and 2» waves. dimensional and cannot be generally reduced to quasicircular
symmetry by further renormalization of the normalized
COA, %A, 9*A, . _ transverse coordinatesandy, i.e., there is no cylindrical
! (9_§+ '311(9_,]27L D12,9_72 =—T'AA] exp—iAkY), symmetry because th; are not equal to each other. These

equations are formally similar to ones describing quadratic
A 2 2 Iight bu_IIets [12,13], used to discuss _the p.roperti(_as of one-
—2+(D21—22+D22—22) — _TAZexpiAKS). dlme"n3|onal,_spatlo—temporal quadratic solitons with “anisot-
74 an ay ropy” necessitated by dispersion. Our case involves physical
limitations on the size of the anisotropy found in nature that
In these equation®;, D15, Dy, andD,, stand for the allows the introduction of further analytical approximations.
diffraction of a fundamental waveé=W, first index is 2 and  Also, if the transverse axesandy are rescaled, the soliton
second harmoni€SH, first index is 2 along then (second parameterr as well as the field normalization will take dif-
index is ) andy (second index is 2axes, respectively; is  ferent forms from the most common onjés.

proportional to the coefficient of quadratic nonlinearity and  For stationary solutions, i.e., no dependence of the ampli-
Ak is the wave vector mismatch between the fundamentaiudes on propagation coordinate
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9°B, N . The beam waists must be positive so thag;d,;— 1,019
diy 2+ dlzw— B1+BIB,=0, <1 and|by;dy;— byydy < a. Itis possible to express the SH
beam waists in terms of the FW beam waists and indepen-
dent material parameters, and vice versa. However, further
9°B, 9°B, 1, elimination of variables leads to very complex equations of
dor gz + 0oz oz — aByt 5 B1=0. fifth order.
It is instructive to examine several special cases before
Following the procedure outlined by Steblieaal. [8], we proceeding with the most general treatment. For isotropic
introduce the Lagrangian, given by diffraction, i.e., setting all diffraction parametedg to 1, the
set of completely independent equations first found in Ref.
1 (4w (i oB,)2 2B, 2 [8] is obtained, namely,
L_Ef_m J_w dXdy{(dll(W) +d12(W) ,
b11: b12, b21: b22, —a+ 26Yb11+ 32)11: 0 (2)
9B, 9B, 2

+dy] +B§+ aB%-BfBz], Here one needs to retain only positive real roots due to

2
&_x) +d22(a_
y physical restrictions on beam waist. Another interesting so-

and approximately solve the resulting Euler-Lagrangiaution arises forby,dy;—by,d;,=0, which means that the
equations. Allowing the soliton to have an elliptical rather Solitons are elliptical, and their ellipticity is simply propor-

than a circular form, we introduce trial functions of the form, tional to the anisotropy of the FW diffraction coefficients.
This condition requiresd;;d,,=d;5d,,, which basically

) ) 5 5 states that for this particular case there exists a transforma-
By=Wj e PP B,=W,e Pa by, tion (i.e., rescaling of transverse coordinateandy) which
transforms the set of two bounded E®) to circular sym-
These functions are used to turn the variational prob&m  metry. In this case the variables in the equations for beam
=0 into a set of algebraic equations obtained by taking alkizes b;; are easily separable which leads to an equation
first derivatives ofL with respect to the parameteds; and  similar to Eq.(2), namely,
bij, (i;j)=1,2. Substituting the trial function into the La-
grangian yields a system of six equations. After simplifica-
tion the amplitudes of the elliptical Gaussian solutions as-
sumed are found to be

—a+t 20fd11b11+ 32d§1d21b21:0. (3)

This is an important result which shows that the anisotropic
soliton parameters are expected to depend on the phase mis-
(b11dy1+bgodip+1) match, similar to the dependence found for isotropic soliton
2_ 1
V3= 2\byib1, V(2byy+bay) (2b151b2o), parameters. Also, if one is to employ numerical methods to
solve the full set of algebraic equations, the suggested initial
guess would be given by E) or Eq.(3). It is worth noting

(bs1doq+boydont a) to observe that for ang>0, d;;>0 andd,;>0, ab;;>0
V=¥, Jb,0,, does exist. Subsequently this special case will be referred to
2122 as quasi-isotropic.
12 The most general case is now considered. Treating the
X (20114 byy)(2bypt o) | . parametera as a variable, introducing the substitutions

b,,d,=1 and by;d;;=n, and choosingh to be a second
variable and to be a parameter, the “variables” can be sepa-

The soliton waists are given by rated and the set of solutions found. For the material param-
etersd,, andd,,, solutions of different ellipticity are sought
4b%ldll by varying the parametdr This leads to

b = 1
21 1—Dbyydyg+byody,

A= ——

2n? (dﬂ( 2(n+1)

d22< 2(n+2)

|

o 4b§_2d12 n—I dll (n_l_l) d12 (n_|+1) (4)
227 1+ byydyg— byt
and

b _b21< N 4by1dy; ) (—I 1)7d
117 5 ' —I=n-

2 a—bai0p;+ btz 0=T[d—zz(n—l—l)(Bn—l—l)l2

- 12

D2, 4byoda; ) day
bi=—"| 1+ : ——=(n—=1+1)n*(n—31+1)|. 5
2 a+ D21y~ boody, dll( e ) ®
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FIG. 2. Variation inn as a function of for d,;/d,;=1 andd,,/d,,=1.1. Thin dashed lines, physical limits forandl. Thin dotted line,
quasi-isotropic dependence. Thick dashed line, unphysical branch. Thick dotted line, branch containing unphysical and(lpltysical
ultimately unstablesolutions. The region near the origin is expanded in the inset. Physical solutions are located from the origin up to the
black dot. The thick solid line, which is discontinuous between the two black dots, contains both unphysical and (gardigatable and
partly unstablgsolutions. Its physical solutions lie on the line between the black dot and the white triangle. The soliton patavaets
monotonically from O at the origin to infinity at the triangle position.

The last equation yields five different solutions for any given dpp  dpo| , _dpy dy;  dyy

I. However, most of the solutions are unphysical. Indeed, Z[d— d_} —Zd—nz—[d— d_}

both n and|l must be real positive values)—I|<1, and the 2 11 L2 (e
parametera also is expected to be positive to insure self- d_21 d_22 240 d_22_2d_21 _20'_22
trapping, by analogy to the isotropic case. Note that the set of dy; dyy dip “dgq n dip

solutions forn—1=0 requires special treatment and coin-
cides with the “quasi-isotropic” case treated above. Further-After applying the same approximation to Ed), the soli-
more, two of the solutions do not match the criteria for anyton’s waist as a function of the parameterandd;; is given
values of parameters and are considered unphysical. by

The typical variation ofn as a function ofl for d,;/d;
=1 andd,,/d;,=1.1 in the real plane is shown in Fig. 2, d,; d d d
along with the largest difference betweenand | (thin —a+2an+4(d—21— d_zz)n2+ 16(d—21+ d_zz) n®=0. (7)
dashed linesacceptable by the physical constraints that both 1 noome

n and| must be real positive values aho—1]<1. The thin  Formally, Eq.(7) includes both Eqg2) and(3), even though
dotted line is forn=1. The exclusion of nonphysical solu- j; js derived under the condition that—1+#0 (or dyydss

tions leaves only one continuous set of physical solutions.. 4. 4. ). As discussed before, there is only one real posi-
made up of partial combinations of two different branches;ye solution for eachu>0 andd;;>0.

These physical solutions start at the origin as a dotted line
and continue smoothlgat the solid dgtas a solid line up to

| ~0.55(marked by a triangle Each pair of physical param-
eters,n andl, determines a unique, which varies from 0 to The stability issue was addressed by employing the
positive infinity asl varies from 0 to~0.55. The continua- Vakhitov-Kolokolov criterion for soliton stabilityf14]. The
tion of this set forl>~0.55 is unphysical, because be-  dependence of the Hamiltonian

comes negative. Note that the set of physical solutions does

not deviate much from the “quasi-isotropic” solution for all

physically reasonable ratigfrom about 0.7 to about 1)4f H :f f di
d,,/d;; anddy,/dq,. This suggests another useful substitu-
tion, m=n—1 and an approximation to the equations that
retains only linear terms with respect i@ For Eq.(5) this
yields the simple first-order equation relatihgo n (after
substituting backn=n-—1), on the total energy

lIl. STABILITY

2
+d12

2 2

9B,
X

9B4|?
W + d21

B,

oX

B,

+d22W

1 * 2 2p*
— 5 (BY*B,+BIB}) | dXdy
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Q FIG. 3. Hamiltonian versus en-

250 300 ergy for anisotropic solitons with
‘ ' the isotropic limit given by the
solid line. (@) Examples of the
quasi-isotropic  limit, dy;=dy;
=1.3, dy;=d,,=1 (dashedt d;;
=d,;=0.7, dy;=d,,=1 (dotted;
(b) Examples of substantially an-
isotropic casesd;;=1.3, d;,=1,
d,;=0.7, dy=1 (dashed d;;
=07, dy=1, dy=1.3, dyp=1
(dotted.
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IV. NUMERICAL SIMULATIONS

o= [ [ 1B+ 20(8 0%, o
In order to support our analytical findings, we performed

a series of direct numerical simulations of the normalized

] ) o . coupled equations for a lardeelative to that found in most
for different amounts of anisotropic diffraction was com- phase-matchable crystalgiffraction deformation of about
pared with the isotropic dependence. It is obvious that twa3n to emphasize the noncircular nature of the soliton fields.
physically different cases need to be considered individuallyy\,e yse a standard split-step Fourier method to selydor
The curves shown in Fig.(8 are for the casesl;;>di>  ap initial field distribution based on the approximate soliton
together with d;>dp,, or dy<<di, together with da;  splutions. As an example, for the soliton parameter 10
<d,, which is typical for anooo geometry(quasi-phase e compare the propagation of both quasi-isotropic and an-
matched solitons Solitons of thl_s_ kind can be_approx!mated isotropic solitons defined by,;= dx;=0.7,d;,=dx=1, and
in many cases by thg quaS|-|sotrop|c solitons _d'SCU_SseEhl:dzz:O.?, d;,=dy=1, respectively. According to the
above. Indeed, for periodically poled KTP, the diffraction yredictions of the variational method combined with the
anisotropy is about 13% for the FW and 11% for the SH.\/akhitov-Kolokolov criterion we should have stable soliton
Thatis,e, /e, will be equal to 1.106 for FF and 1.125 for SH propagation in both cases.
[15]. The multiple soliton generation mechanism in such sys- First, we discuss propagation of a quasi-isotropic soliton
tems is currently being studied and is beyond the scope Qfjith «=10. The propagation of the soliton found via the
this paper. Fig. @) presents thed(Q) dependence for or- yariational method is not stationary at the input because of
thogonal orientations of the long axes of the diffraction el-this technique’s inherent approximation&ig. 4@], but
lipse for the FW and the SH. This is usually the casedide  evolves towards a stationary soliton. We see that the output
SHG geometriegType | solitong. The beam propagation in fields are slightly elliptical. The ratio of the half-widths at
such the materials was discussed in Réf], and exhibits half maximum(HWHM) along the axes for the FW is the
novel behavior when compared to isotropic diffraction. Usu-same as for the SH, around 0.8+g. 4(b)]. This value per-
ally the soliton is excited via a single Gaussian-shaped FVgists with small changes in beam size due to nonstationary
beam, which is substantially different from the stationarypropagation. This result can be obtained from a renormaliza-
soliton solution, and the formation of high energy solitons istion of transverse dimensions which renders the coefficients
affected by beam deformation due to anisotropic diffractionfor the diffraction terms equal to unity in Eql), and also
and results in multiple soliton generation. It turns out, how-from the variational method, both of which give 0.84 for the
ever, that both cases yield comparable behavior i é®) beam waist ratidcalculated fromyb,,/b4;). Thus we see
plot. This result shows that despite fundamental differencethat the 2D numerical method is consistéta within 4%)
in multiple soliton generation mechanisms the solitons inwith the approximate analytics and preserves the quasicircu-
both cases are similar. In all plots, theparameter grows lar symmetry of the problem.
along the curve starting from its right-uppermost corner. The propagation results for anisotropic solitons with
Thus the necessary stability criteriditd/dQ< 0 is satisfied =10, again based on the initial solutions used for the varia-
for sufficiently largea and the shape, and main features oftional technique, are also near the input not strictly stationary
the H(Q) curves are very similar to the isotropic case. It is[Fig. 5@)], similar to the quasi-isotropic case. The approxi-
very important to note that the branch splitting found with mate ratio of the beam waists along the two axes is 0.87 for
the variational approach and plotted in Fig. 2 does not conthe FW and 0.96 for the SH-ig. 5b)]. The variational ap-
stitute a change of slope for tHe(Q) curve, yielding the proach gives 0.86 and 0.92 correspondingly. Because the in-
sameH(Q) dependence as in the isotropic cé8¢ There- tensity of the FW component is substantially higher than the
fore, the stability puts another constraint on the range oSH and the waves are strongly coupled, the deviation from a
acceptable soliton widths. Specifically for physically accept-circular beam shape is in the same direction in space for both
able anisotropies, the physical solutions from the origin to atomponents, and not in orthogonal directions as expected
least the solid circle in Fig. 2 are unstable with the stabilityfrom linear optics(decoupled wavegsfor d,/d;;>1 and
range determined by the details of the anisotropy. d,,/d,;<1. Therefore, we note that a variational approxima-
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FIG. 5. Soliton propagation and shapes after propagation in a
FIG. 4. Soliton propagation and shapes after propagation in @onlinear essentially anisotropic medium with=10, d;;=d,,
nonlinear quasi-isotropic medium with= 10, d;;=d,;=0.7, and  =0.7, andd,,=d,;=1. (b) intensity distribution along axis during
dy,=d,,=1. (a) intensity distribution alony axis during propaga- propagationyb) output profile and evolution of the FW and SH.
tion; (b) output profile and evolution of the FW and SH.
experimentally. However, the effect of diffraction anisotropy

oes manifest itself clearly in multisoliton generation in a

tion de.sc.nbes th.e relative orientation of the Iong sémiaxes Ogumber of noncritically phase-matched second harmonic ge-
the elliptical soliton, although it fails to predict the exact ometries

beam waist at HWHM. The latter can be explained by the
fact that the trial functiongGaussiansused in the varia-
tional method differ from the exact soliton shape. This shows
that the variational method developed here predicts correctly We showed, both analytically and numerically, that qua-
the existence and properties of anisotropic solitons. Note thatratic solitons in optically anisotropic media exist, are stable,
|m| is less than 0.05 in this case, which makes the propagand have an elliptical shape. We also explored the multiple
tion of anisotropic solitons given by the approximate formu-solutions obtained by a variational approach to find the
las (6) and (7) valid. uniqueness of the soliton solution for any given setdgf

The small diffraction anisotropy available for physically (diffraction coefficienty and « (soliton parameter depending
realizable crystals leads to only weak ellipticity in the field on intensity and wave vector mismajclDepending ona,
profiles and it is not surprising that it has not been reportedhese solutions may be stable or unstable.

V. CONCLUSIONS
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